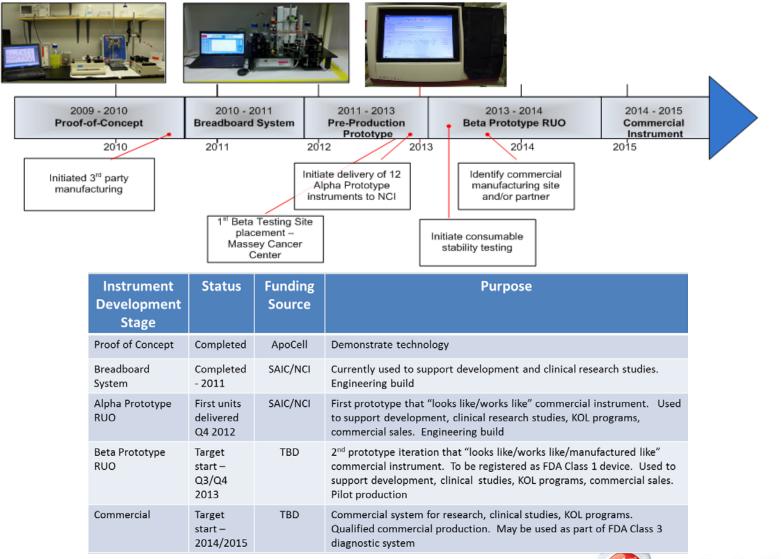
ApoStream™ from Concept to Market

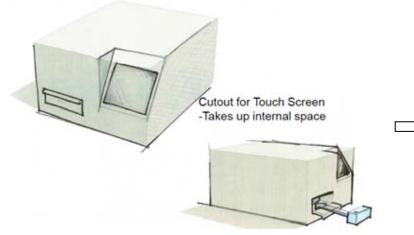
Presenter: Anoop Menachery, Ph.D. May 26th, 2013

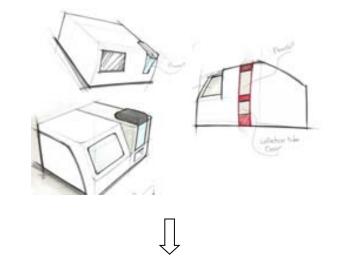

Special DEP Session at Advances in Microfluidics & Nanofluidics (AMN 2013) May 24-26, 2013, University of Notre Dame, Notre Dame, Indiana, USA

Introduction

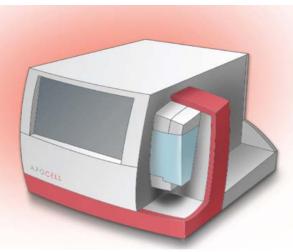
- ApoStream[™] is an antigen-independent dielectrophoretic (DEP) cell enrichment device that circumvents the need for specific antigen expression on the target cells' surface for isolation of rare circulating tumor cells (CTCs) and cancer stem cells from whole blood.
- ApoStream[™] is being implemented as a Research Use Only device for the isolation and characterization of CTCs from cancer patients participating in clinical trials.
- ApoStream[™] is being developed and designed in accordance with design controls per ISO 13485 and FDA Quality System Regulation (21 CFR 820).

ApoStream™ Development Path and Status

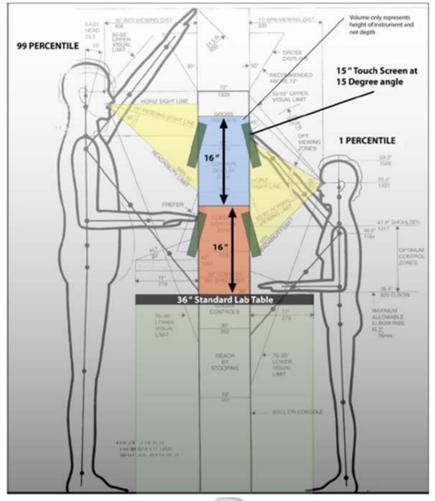




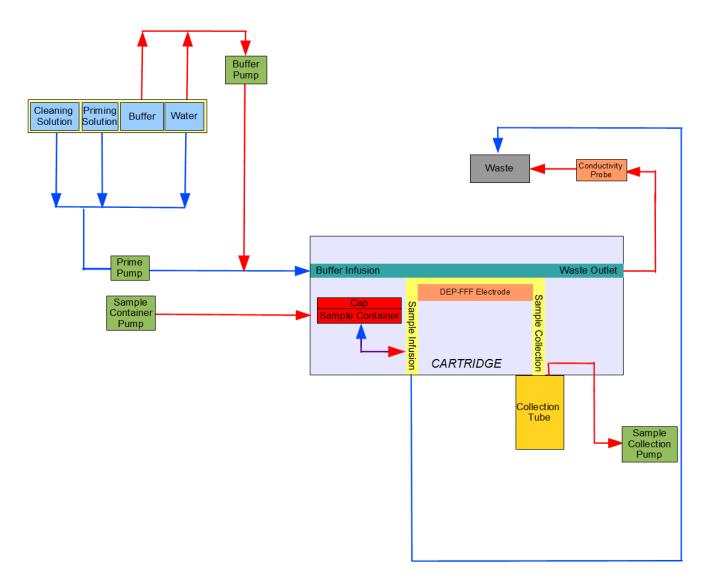
& diagnostics



Prototype Design Evolution (Industrial Design)



Design Process


- Design inputs
 - Technical specifications
 - Human factors engineering
 - Cognitive task analyses
 - Customer requirements (e.g. stackable design)
 - Process analysis
 - Risk analysis
- Design outputs:
 - Sample loading from front
 - Consumables accessible from side
 - 24" x 19" x 16" (w x d x h)
 - 15" color, touchscreen display with tilt capability
 - Software: GUI and ICP
 - Fluid schematics, electronics, mechanical design

Device Schematic

Graphical User Interface

Run Tab

- User Inputs
 - a. User Name
 - b. Sample ID
 - c. Sample folder
 - d. Flow Chamber ID

- Sensor Indicators
 - a. Door
 - b. Flow Chamber
 - c. Collection Tube

- DEP Channel Parameters
 - a. Frequency
 - b. Voltage
 - c. Conductivity
 - d. Temperature

- Progress Indicators
 - a. Sample Run time
 - b. Cumulative Run Time

Graphical User Interface

Fluidics Tab

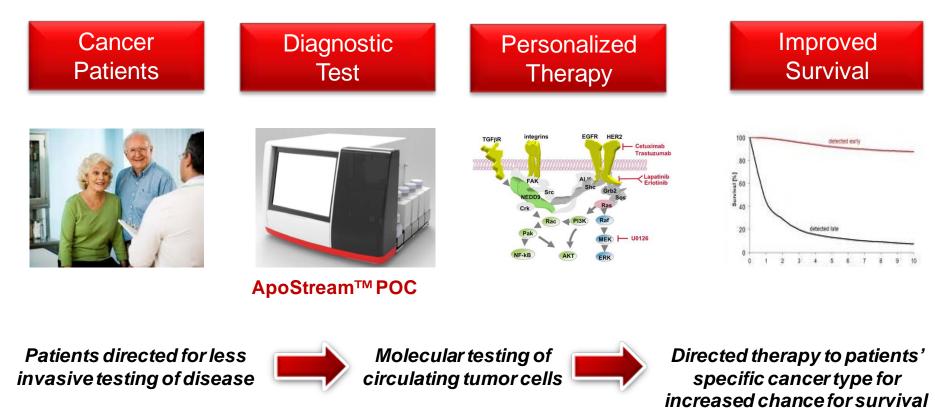
- Pump Status and Flow Rate
 - a. Buffer Pump
 - b. Container Pump
 - c. Collection Pump
 - d. Prime Pump
- Fluid Level Indicators
 - a. Water
 - b. Buffer
 - c. Priming Solution
 - d. Cleaning Solution

- Valve Indicators
 - a. Buffer Infusion
 - b. Sample Container
 - c. Prime
 - d. Sample collection
- Lot Numbers
 - a. Elution Buffer
 - b. Sample Buffer
 - c. Pretreatment Buffer

Risk Analysis

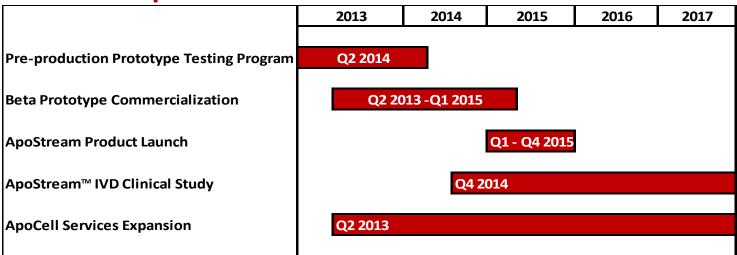
• Risk analysis conducted in accordance with ISO14971

Potential Hazard					Risk Reduction Approach				
Category	Hazard Description	S	0	R#	- Mitigation	Reference	S	0	R#
Inadequate service and maintenance	System does not operate or perform as intended	4	3	12	 Life testing Defined maintenance and service intervals User instruction Prompt service through software 		4	2	8
USE BY UNSKILLED OR UNTRAINED PERSONNEL									
Use by inappropriate personnel	Damage to system, improper data, User injury	4	4	16	 Laboratory use only System user login User instruction 		4	2	8
REASONABLY FORESEEABLE MISUSE									
Misuse of system	System damage or incorrect data output	4	4	16	 User instruction Scheduled maintenance 		4	2	8
	Reuse of flow chamber/disposables	4	4	20	 User instruction Labeling Barcoding of disposables Automated chamber cleaning is part of protocol 		4	2	8
	Short cut process	3	4	12	 User instruction Software specification System warning 		3	3	9
	Flow chamber removed from system	2	4	8	 Flow chamber/collection tube/door sensor User instruction System warning 		2	1	2
	Door opened during process	4	5	20	- Door sensor		4	2	8



Α

CELL


molecular profiling & diagnostics

Long-Term Goal: Clinical Utility ApoStream[™] for Personalized Cancer Therapy

ApoStream™ Commercialization Timeline

- ► ApoStreamTM Pre-Production Investigational Use Only (RUO) system
 - Engineering build
 - Academic research market and internal service work
 - Beta testing program

► ApoStreamTM Beta-Prototype Investigational Use Only (RUO)

- Pilot production build
- Basis for diagnostic assay development
- FDA class I clearance (subsequent filing)
- CE mark in accordance with IVDD (subsequent filing)

► ApoStream[™] In Vitro Diagnostic Device (IVD)

- Clinical market, validated device (production manufactured)
- Provider of clinical diagnostic assays
- FDA class II clearance (510(k))
- CE mark in accordance with IVDD

Acknowledgements

molecular profiling & diagnostics

Anoop Menachery Vishal Gupta Vlada O. Melnikova David K. Hasegawa Darren W. Davis **SAIC** Frederick

Frederick National Laboratory for Cancer Research

Funded in part by NCI Contract No. HHSN26120080001E

Robert Kinders, PhD Priya Balasubramanian, PhD Lihua Wang, PhD

James H. Doroshow, MD Joseph E. Tomaszewski, PhD

