• Biospecimen SolutionsPrecision Value & HealthCareers
    P_ForMedicine_no_tag_RGBP_ForMedicine_no_tag_RGBP_ForMedicine_no_tag_RGBP_ForMedicine_no_tag_RGB
    • Clinical
      Trial Services
        • Overview
            • Oncology Clinical TrialsImage

              Oncology Clinical Trials


              Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

              • Rare & Orphan DiseaseImage

                Rare & Orphan Disease


                With experience built on 150+ orphan disease projects covering 80+ rare diseases, we know how to anticipate logistical and regulatory obstacles and craft bold solutions that drive rare disease development programs.

        • Global Clinical Trial Support –
            • North & South America –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

            • Europe –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

            • APAC –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

        • Clinical Trial Management –
            • Study Start-up & Feasibility –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

            • Project Management –
            • Patient Recruitment –
            • Personalized Clinical Trial Operations –
            • Biometrics –
            • Medical & Safety Monitoring –
            • Clinical Data Management –
            • Medical Writing –
        • Clinical Development Strategy –
            • Clinical Development Planning –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

            • Biomarker Strategies –
            • Cell & Gene Therapy Strategies –
            • CDx Regulatory and Market Access –
        • Clinical Trial Design –
            • Basket & Umbrella Trials –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

            • Biomarker Clinical Trials –
            • Master Protocol Trials –
            • Decentralized Clinical Trials
        • Biostatistics –
            • Statistical Consulting –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

            • Study Design –
            • Data Monitoring Committees –
            • CDISC Programming and Documentation –
            • eCTD Submissions –
        • Central Lab Services –
            • Clinical Specimen Kitting –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

            • Sample Processing –
            • Global Specimen Logistics and Biostorage –
            • Biospecimen Data Services –
            • Precision Lab e-Portal –
            • Virtual Sample Inventory Management –
        • Training
            • Oncology Clinical TrialsImage

              Oncology Clinical Trials


              Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

              • Rare & Orphan DiseaseImage

                Rare & Orphan Disease


                With experience built on 150+ orphan disease projects covering 80+ rare diseases, we know how to anticipate logistical and regulatory obstacles and craft bold solutions that drive rare disease development programs.

    • Lab
      Services
        • Central Lab Services –
            • Clinical Specimen Kitting –
              • Oncology Clinical TrialsImage

                Oncology Clinical Trials


                Through 20+ years running successful oncology trials, we’ve developed a unique blend of proprietary technologies, flexible processes, and creative problem solving abilities that advance even the most challenging clinical development programs.

            • Sample Processing –
            • Global Specimen Logistics and Biostorage –
            • Biospecimen Data Services –
            • Precision Lab e-Portal –
            • Virtual Sample Inventory Management –
        • Specialty Lab Services Overview –
            • Immune MonitoringImage

              Immune Monitoring


              Leverage sophisticated immune monitoring approaches, including flow cytometry, Epiontis ID immune cell phenotyping, and cytokine profiling, to characterize the immune cells in your samples and understand their impact on patient biology.

              • Tissue & Liquid BiopsyImage

                Tissue and Liquid Biopsy


                Obtain a detailed molecular view into patient biology with a range of tissue and liquid biopsy technologies, including our proprietary ApoStream platform which can isolate and enrich circulating tumor cells for downstream analysis.

        • EU Contract Research Organization –
        • Immune Monitoring –
            • Immune Monitoring by Flow Cytometry –
              • Immune MonitoringImage

                Immune Monitoring


                Leverage sophisticated immune monitoring approaches, including flow cytometry, Epiontis ID immune cell phenotyping, and cytokine profiling, to characterize the immune cells in your samples and understand their impact on patient biology.

            • Immune Cell Phenotyping by Epiontis ID –
            • Cytokine Profiling –
            • Gene Expression Profiling –
            • ELISpot and FluoroSpot –
            • Custom Assays –
        • Flow Cytometry –
            • Receptor Occupancy Assays by Flow Cytometry –
              • Immune MonitoringImage

                Immune Monitoring


                Leverage sophisticated immune monitoring approaches, including flow cytometry, Epiontis ID immune cell phenotyping, and cytokine profiling, to characterize the immune cells in your samples and understand their impact on patient biology.

        • Genomics –
            • NanoString Assays –
              • Immune MonitoringImage

                Immune Monitoring


                Leverage sophisticated immune monitoring approaches, including flow cytometry, Epiontis ID immune cell phenotyping, and cytokine profiling, to characterize the immune cells in your samples and understand their impact on patient biology.

            • ddPCR –
            • qPCR –
            • NGS –
            • Fluorescence In Situ Hybridisation (FISH) / ISH –
        • Tissue & Liquid Biopsy –
            • ApoStream – CTC and Rare Cell Isolation for Liquid Biopsy
              • Immune MonitoringImage

                Immune Monitoring


                Leverage sophisticated immune monitoring approaches, including flow cytometry, Epiontis ID immune cell phenotyping, and cytokine profiling, to characterize the immune cells in your samples and understand their impact on patient biology.

            • CTC / cfDNA / Exosome Analysis –
            • Multiplex Immunofluorescence –
            • Immunohistochemistry –
            • Fluorescence In Situ Hybridisation (FISH) / ISH
            • Pathology Services –
            • NanoString Assays
        • Bioanalytical Testing –
            • Immunogenicity Testing –
              • Immune MonitoringImage

                Immune Monitoring


                Leverage sophisticated immune monitoring approaches, including flow cytometry, Epiontis ID immune cell phenotyping, and cytokine profiling, to characterize the immune cells in your samples and understand their impact on patient biology.

            • PK Assays –
            • ADA Assays –
            • MesoScale Discovery (MSD) Assays –
            • Quanterix SIMOA –
            • ELISA
        • Cytokine Analysis –
            • ELISA –
              • Immune MonitoringImage

                Immune Monitoring


                Leverage sophisticated immune monitoring approaches, including flow cytometry, Epiontis ID immune cell phenotyping, and cytokine profiling, to characterize the immune cells in your samples and understand their impact on patient biology.

            • MesoScale Discovery (MSD) Assays
            • Luminex –
            • Quanterix SIMOA
        • Preclinical Target and Biomarker Validation –
            • Cell Based Assays –
            • Target Expression – XpressWay Profiles –
            • Tissue Cross-Reactivity –
            • Fluorescence In Situ Hybridisation (FISH) / ISH –
            • Multiplex Immunofluorescence –
            • Immunohistochemistry (IHC)
        • Biospecimens
            • Immune MonitoringImage

              Immune Monitoring


              Leverage sophisticated immune monitoring approaches, including flow cytometry, Epiontis ID immune cell phenotyping, and cytokine profiling, to characterize the immune cells in your samples and understand their impact on patient biology.

              • Tissue & Liquid BiopsyImage

                Tissue and Liquid Biopsy


                Obtain a detailed molecular view into patient biology with a range of tissue and liquid biopsy technologies, including our proprietary ApoStream platform which can isolate and enrich circulating tumor cells for downstream analysis.

    • Data
      Sciences
        • Overview
            • BiostatisticsImage

              Biostatistics


              Seasoned biostatisticians and statistical programmers support every phase of your trial, from study design for small, rare disease trials to regulatory submissions, all backed by meticulous documentation.

              • QuartzBioImage

                QuartzBio


                Purpose-built technology engineered specifically to reach across data silos and address the challenges of both sample data and biomarker data management— providing a single, scalable data platform solution.

        • Biostatistics
        • Clinical Data Management
        • Biometrics
        • QuartzBio –
            • Biomarker Data Management –
              • BiostatisticsImage

                Biostatistics


                Seasoned biostatisticians and statistical programmers support every phase of your trial, from study design for small, rare disease trials to regulatory submissions, all backed by meticulous documentation.

            • Virtual Sample Inventory Management –
    • Diagnostics
      & CDx
        • IVD and CDx Regulatory Affairs Consulting –
          • spevialty_labs_slice-300×54Image

            Specialty Lab Services


            Our comprehensive approach starts with a foundation of expertise in key biomaker discovery and analysis methods such as immune monitoring, genomics, and bioanalysis.

        • COVID-19 & Viral Panel Assays –
          • spevialty_labs_slice-300×54Image

            Specialty Lab Services


            Our comprehensive approach starts with a foundation of expertise in key biomaker discovery and analysis methods such as immune monitoring, genomics, and bioanalysis.

        • Biospecimens Solutions 
          • spevialty_labs_slice-300×54Image

            Specialty Lab Services


            Our comprehensive approach starts with a foundation of expertise in key biomaker discovery and analysis methods such as immune monitoring, genomics, and bioanalysis.

        • Diagnostic Market Access Services –
          • spevialty_labs_slice-300×54Image

            Specialty Lab Services


            Our comprehensive approach starts with a foundation of expertise in key biomaker discovery and analysis methods such as immune monitoring, genomics, and bioanalysis.

        • Companion Diagnostics
    • Therapeutic
      Areas
        • Overview
            • By Specialty Area
              • Global-clinical-trial-support-2Image

                Global Clinical Trial Support


                Sample processing labs, clinical trial sites and offices in five continents provide the clinical reach and scale to manage complex global programs.

            • Oncology and Immuno-Oncology
              • Oncology Clinical Trials
            • Rare & Orphan Disease
              • Global-clinical-trial-support-2Image

                Global Clinical Trial Support


                Sample processing labs, clinical trial sites and offices in five continents provide the clinical reach and scale to manage complex global programs.

            • Cell & Gene Therapy
              • Cell Therapy
              • Gene Therapy
              • Cell and Gene Therapy Manufacturing
            • CNS & Neuroscience
              • Global-clinical-trial-support-2Image

                Global Clinical Trial Support


                Sample processing labs, clinical trial sites and offices in five continents provide the clinical reach and scale to manage complex global programs.

            • COVID-19
            • AutoImmune & Allergy
            • Pediatric
        • By Research Phase
        • Preclinical Development –
        • Early Phase Trials (I-IIa) –
        • Late Phase Trials (IIb-III) –
    • News &
      Insights
        • Blog –
            • iStock-945738094Image

              Blog


              Industry trends and best practices from Precision experts

              • shutterstock_1033743346Image

                Resources


                A searchable hub featuring the latest Precision case studies, white papers, capabilities brochures and more.

        • Resources –
        • Thought Leadership –
        • News –
            • iStock-945738094Image

              Blog


              Industry trends and best practices from Precision experts

              • shutterstock_1033743346Image

                Resources


                A searchable hub featuring the latest Precision case studies, white papers, capabilities brochures and more.

        • Events –
            • iStock-945738094Image

              Blog


              Industry trends and best practices from Precision experts

              • shutterstock_1033743346Image

                Resources


                A searchable hub featuring the latest Precision case studies, white papers, capabilities brochures and more.

    • About
      Us
        • Our Passion –
            • Patient RecruitmentImage

              Our Passion


              What we do, why we do it and the principles that guide us every day.

              • meet-our-peopleImage

                Meet Our People


                We are devoted professionals with deep expertise in translational science, clinical trials and data sciences.

        • Meet Our People –
        • Careers
        • Regulatory Information –
            • Patient RecruitmentImage

              Our Passion


              What we do, why we do it and the principles that guide us every day.

              • meet-our-peopleImage

                Meet Our People


                We are devoted professionals with deep expertise in translational science, clinical trials and data sciences.

    • Contact
      Us
    • Home
    • Guiding Precision Medicine with Liquid Biopsy: Circulating DNA vs Circulating Tumor Cells
    Blog Clinical Research Insights Translational & Lab Insights
    Article

    Guiding Precision Medicine with Liquid Biopsy: Circulating DNA vs Circulating Tumor Cells

    Written By Jesus Garcia, PhD • May 3, 2023 • 9 min. read

    Tissue Biopsy vs Liquid Biopsy

    While tissue biopsy remains the gold standard for disease diagnosis and research, interest in liquid biopsy as an alternative or adjunct to tissue sampling is increasing. Presently, experts are actively exploring liquid biopsy in precision medicine for cancer detection, screening for disease recurrence, evaluating treatment response, and assessing residual disease at the molecular levels.

    With tissue biopsy, nucleic acids and proteins can be assessed in situ, along with their architectural and spatial context. However, tissue sampling is invasive, not amenable to repetition and might be technically challenging or associated with unacceptable procedural risks. Further, in clinical studies, a requirement for multiple biopsies significantly slows down enrollment rate due to high patient burden. When tumor tissue sampling is not feasible, liquid biopsy offers a minimally invasive alternative. Liquid biopsy also enables serial testing across multiple timepoints, which could be used for longitudinal monitoring of whole-body disease burden, tumor progression or therapeutic response.

    Cancer, as a spatially and temporally dynamic disease, demonstrates heterogeneity not just within tumors, but also between primary and metastatic tumors in the context of precision medicine. Consequently, single tissue biopsies may lead to drastic underestimation of the full genomics landscape of an individual patient’s cancer.[1] Thus, liquid biopsy can serve to complement traditional tissue-based assays, providing additional or adjunctive insights.

    In this article, we investigate the two main genomics-based methods in liquid biopsy: analysis of circulating DNA/RNA and circulating tumor cells (CTCs), examining their advantages, drawbacks, and possible applications in precision medicine.

    Circulating DNA in Liquid Biopsy

    Certain liquid biopsy techniques in precision medicine examine circulating nucleic acids, encompassing both DNA and RNA. Circulating nucleic acids comprise both circulating tumor DNA and RNA (ctDNA and ctRNA) and cell-free DNA and RNA (cfDNA and ctRNA). Studies have revealed that ctDNA, or tumor-derived DNA fragments unassociated with cells, accurately represents the tumor's origin, making it valuable in liquid biopsy for precision medicine. A study comparing targeted sequencing of ctDNA and matched tissue biopsies from patients with metastatic castration-resistant prostate cancer (mCRPC) showed high concordance in the gene alterations identified.[2]

    Meanwhile, cfDNA and cfRNA describe any nucleic acids that are circulating in the bloodstream but are not necessarily of tumor origin. Cancer patients typically exhibit higher average cfDNA levels compared to healthy individuals, and numerous studies in liquid biopsy research have shown a strong correlation between mutations identified in cfDNA and those discovered in tissue biopsy samples.[3] There is also evidence that levels of plasma cfDNA increase as tumors progress and that cfDNA acts as a signaling molecule to induce metastasis.[4] In addition, recent research focused on cfDNA methylation signatures and fragmentation patterns demonstrates promise for screening, early detection, and monitoring of cancer. Moreover, accumulating knowledge indicates that non-coding circulating RNAs play a critical role in the pathogenesis of various cancers and that dysregulated microRNA expression levels may be useful as clinical biomarkers.[5]

    Genomic profiling of circulating DNA is generally performed using digital droplet PCR (ddPCR) if the researchers has identified a gene mutation of interest or NGS if the mutation of interest has not yet been delineated. Sequencing of ctDNA generates a large volume of information, including the mutation status of dozens or hundreds of oncogenes simultaneously. However, key limitations of ctDNA are that it does not provide any information on the expression levels of any given protein or any exon-skipping events or splice variants and that its clinical utility for primary cancer screening and minimal residual disease (MRD) monitoring remains unproven.[6]

    Circulating Tumor Cells in Liquid Biopsy

    In the last decade, advancements in isolating circulating tumor cells (CTCs) have enabled single-cell level analysis, allowing researchers to study spatial and temporal dynamics in circulation within liquid biopsy and precision medicine.[7] A growing body of evidence demonstrates that CTCs—cancer cells that have migrated into the bloodstream—undergo dynamic molecular changes in response to systemic therapy and may have clinical utility as functional biomarkers. In metastatic breast cancer, prevalence of CTCs in the blood has been correlated with lower progression-free and overall survival and has been shown to be of higher prognostic value than conventional imaging.[8],[9]

    CTC-based liquid biopsies have the advantage of preserving cellular contents, allowing for gene expression profiling and other downstream analyses at the single cell level. In addition, tumors may harbor segregated clones, which could easily be missed by biopsy but may be captured by CTCs. Moreover, target biomarkers on the surface of CTCs can easily be identified with simple antibody binding, as long as the respective antibody is available.

    Comparison of Circulating DNA and Circulating Tumors Cells[10]

    AdvantagesLimitations
    Circulating DNATechnically easier to isolate than CTCs
     
    High sensitivity and dynamic range
     
    May be representative of intratumor heterogeneity

    No requirement for enrichment prior to analysis
    Not all DNA mutations may be expressed
     
    Treatment-related leukocyte and erythrocyte apoptosis could spike ctDNA fraction, thus not reflecting cancer cell death
     
    Source of DNA may not be clear
     
    Large background of normal cfDNA
     
    Unknown whether ctDNA is released from cancer cells because they are dying from or resistant to therapy
     
    Certain medical conditions may cause elevation of circulating DNA
    Circulating Tumor CellsCells, not nucleic acids, are the functional unit driving disease biology

    May be representative of intratumor heterogeneity
     
    May be better than circulating DNA for discovering novel targets and evaluating the frequency of multiple known targets

    Intact cells could be resistant clones
     
    Can be used for functional assays (e.g., DNA, RNA, protein)
     
    Can be cultured to evaluated drug resistance both in vitro and in vivo
    May be more difficult to isolate than circulating DNA
     
    Detection is complicated by potentially dynamic marker expression, as is seen with CTCs undergoing epithelial-to-mesenchymal transition (EMT)[11]
     
    Sampling bias of captured cells if selection is affinity- or size-based

    Applications of Liquid Biopsy

    Genomics-based liquid biopsy offers extensive potential in various oncology applications, from deciphering a drug's mechanism of action to categorizing patients and tracking treatment response in precision medicine. Currently, most of the FDA-approved liquid biopsy clinical diagnostics use ctDNA or cfDNA. In 2020, two companion diagnostics (CDx) that combine liquid biopsy and next-generation sequencing (NGS) were approved, demonstrating the feasibility and utility of targeting multiple genes to guide clinical decision-making.

    Applications for Circulating DNA

    cfDNA, extensively researched in various cancer types within precision medicine, shows potential as a tool for cancer detection, tumor mutation assessment, treatment eligibility determination, tumor dynamics and therapy response monitoring, and overall survival prediction.[12] In a secondary analysis of the BOLERO-2 clinical trial, prevalence of ESR1 mutations in cfDNA was inversely correlated with overall survival.[13] Numerous studies have demonstrated ctDNA can be used for minimal residual disease (MRD) detection and monitoring after treatment, which aids in assessing response, prognosis, and risk of recurrence.[14] Circulating DNA has also been explored extensively as a tool for providing early assessments of response to immune checkpoint inhibitor therapy.[15]

    Applications for Circulating Tumor Cells

    CTCs have a wide range of applications, from evaluating pharmacodynamic or mechanistic markers and establishing dosing strategies to characterizing heterogeneous CTC subpopulations and selecting patients for clinical trial enrollment. They can also be used as prognostic or predictive biomarkers. For example, in mCRPC, a high degree of phenotypic heterogeneity in CTCs is linked to decreased overall survival.[16] Further, in a small study of patients with pancreatic cancer, researchers found that a sufficient number of CTCs could be obtained from 10 ml of anticoagulated blood to allow for multiparameter phenotyping using qualitative immunofluorescence to identify features that could potentially serve as selective, predictive, or prognostic biomarkers.[17]

    Interrogating CTC biomarkers may also be useful for predicting or monitoring treatment response. For example, in the BEACON trial, multiplex immunofluorescence (mIF) was performed on CTCs isolated from patients with metastatic breast cancer treated with etirinotecan pegol (EP) to measure expression of potential response biomarkers. It was found that topoisomerase (Top1) expression might be useful for identifying those patients who were most likely to experience an overall survival benefit with EP treatment.[18]

    Another potential application of CTCs is in patient selection for clinical trials of solid tumor CAR-T cell therapy and other targeted therapeutics. Typically, patients would be stratified using immunohistochemistry (IHC), but if tissue biopsy is not possible, testing CTCs for the target biomarker would be an alternative approach to making enrollment decisions.

    ApoStream: Advanced Technology for Isolating and Enriching Rare Cells

    Circulating DNA and CTCs circulate at low frequencies. To generate clinically meaningful information, isolation and enrichment of the nucleic acid or cell of interest is generally required. ApoStream, Precision for Medicine’s proprietary CTC platform, uses a dielectrophoresis-based, antibody-independent separation approach to isolate and enrich CTCs. This technology can also be used to isolate other rare cell types such as stem cells, CAR-T cells, and other difficult-to-identify immune cell populations. With ApoStream, enriched cells remain intact and can be integrated with any downstream assay, including mIF, NGS, fluorescence in situ hybridization (FISH) and ISH (see Figure 1).

    Figure 1. CTC isolation and enrichment enables multiple downstream assays from a single sample

    Conclusion

    Liquid biopsy holds great potential for the diagnosis, treatment, and monitoring of patients with cancer. Circulating DNA and circulating tumor cells (CTCs) are both expected to have complementary functions as cancer biomarkers in precision medicine, potentially working together to inform clinical decisions. As technology continues to advance, the clinical applications of liquid biopsy in precision medicine will keep growing, extending beyond oncology to various therapeutic areas.

    Discover how Precision for Medicine supports researchers in obtaining molecular insights through liquid biopsy in precision medicine by clicking here.

    References

    1. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. NEJM 2012; 366: 883-92.
    2. Wyatt AW, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J Natl Cancer Inst. 2017;109.
    3. Lebofsky R, et al. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types. Mol Oncol. 2015; 9:783-790.
    4. Bennett CW, Berchem G, Kim YJ, El-Khoury V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget. 2016;7(43):71013-71035.
    5. Toden S, Goel A. Non-coding RNAs as liquid biopsy biomarkers in cancer. 2022;126(3):351-360.
    6. Dang DK, Park BH. Circulating tumor DNA: current challenges for clinical utility. 2022;132(12):e154941.
    7. Lim SB, et al. Liquid biopsy: one cell at a time. NPJ Precis Oncol. 2019;3:23.
    8. Cristofanilli M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–791.
    9. Giuliano M. Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res. 2014;16(5):440.
    10. Lang JE. Advantages and disadvantages of ctDNA vs CTC assays: How to move the need forward towards clinical application. Available at https://cdp.cancer.gov/resources/technology_development_resources/ctdna/Lang.pdf.
    11. Lindsay C.R. A prospective examination of circulating tumor cell profiles in non-small-cell lung cancer molecular subgroups. Ann Oncol. 2017;28(7):1523–1531.
    12. Qvick A, et al. Liquid biopsy as an option for predictive testing and prognosis in patients with lung cancer. Mol Med. 2021;27:68.
    13. Chardarlapaty S, et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: A secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol. 2016;2(10):1310-1315.
    14. Peng Y, et al. Circulating tumor DNA and minimal residual disease (MRD) in solid tumors: Current horizons and future perspectives. Front Oncol. 2021;11:763790.
    15. Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022 Sep 12;15(1):131.
    16. Scher HI, et al. Phenotypic heterogeneity of circulating tumor cells informs clinical decisions between AR signaling inhibitors and taxanes in metastatic prostate cancer. Cancer Res. 2017;77:5687-5698.
    17. Eisen A, et al. Abstract 428: Phenotyping pancreatic cancer CTCs as biomarkers for RX-3117 clinical trials. 2019. doi: 10.1158/1538-7445.AM2019-428.
    18. Rugo HS, et al. Change in topoisomerase 1-positive circulating tumor cells affects overall survival in patient with advanced breast cancer after treatment with etirinotecan pegol. Clin Cancer Res. 2018;24(14):3348-3357.

    • Jesus Garcia, PhD

      Jesus Garcia, PhD, is a tissue and liquid biopsy expert with extensive experience in a wide range of histopathology assays and digital pathology solutions. Part of the implementation of new technologies at MD Anderson Cancer Center in collaboration with immuno-oncology leaders. Currently focused on partnering with biopharma to develop tissue and liquid biopsy biomarker strategies for clinical trials, and to implement digital pathology and AI in the drug development process.

    Precision for Medicine is part of the Precision Medicine Group, an integrated team of experts that extends Precision for Medicine’s therapeutic development capabilities beyond approval and into launch strategies, marketing communication, and payer insights. As one company, the Precision Medicine Group helps pharmaceutical and life-sciences clients conquer product development and commercialization challenges in a rapidly evolving environment.

    Visit the website
    Clinical Trial Services
    • Overview
    • Global Clinical Trial Support
    • Clinical Trial Management
    • Clinical Development Strategy
    • Clinical Trial Design
    • Biostatistics
    • Clinical Sample Management
    • Clinical Research Organization
    Specialty Lab Services
    • Overview
    • Immune Monitoring
    • Flow Cytometry
    • Genomics
    • Tissue & Liquid Biopsy
    • Bioanalytical Testing
    • Cytokine Analysis
    • Biospecimens
    • Sample Processing
    • Global Specimen Transport & Biostorage
    • Contract Research Organization
    • Bioanalysis
    • Neutralizing Antibody (NAb) Assays
    • PBMC Processing
    Data Sciences
    • Overview
    • Biostatistics
    • Clinical Data Management
    • Biometrics
    • QuartzBio
    • Virtual Sample Inventory Management
    Therapeutic Expertise
    • Overview
    • Preclinical Development
    • Early Phase Trials (I-IIa)
    • Late Phase Trials (IIb-III)
    • Oncology and Immuno-Oncology
    • Rare & Orphan Disease
    • Cell & Gene Therapy
    • Neurology
    • COVID-19
    • Autoimmune & Allergy
    • Pediatric
    • Companion Diagnostics
    About Us
    • Our Passion
    • Meet Our People
    • Careers
    • ESG Policy
    • Regulatory Information

    News & Insights
    • Publications
    • Case Studies
    • Thought Leadership
    • News
    • Events
    © 2023 Precision Medicine Group, LLC. All rights reserved. Privacy Policy    GDPR